HL 54 Metal-insulator transitions

Time: Friday 11:15-11:30

HL 54.1 Fri 11:15 BEY 154

Scanning tunneling spectroscopy of magnetic-field -induced localization in InSb — •KATSUSHI HASHIMOTO¹, FOCKO MEIER¹, JENS WIEBE¹, MARKUS MORGENSTERN², and ROLAND WIESENDAN-GER¹ — ¹Institute of Applied Physics, University of Hamburg, D-20355 Hamburg — ²Institute of Physics, RWTH Aachen University, D-52056 Aachen

Using scanning tunneling spectroscopy (STS), we study the microscopic nature of localization in three dimensional metallic n-InSb with a low carrier concentration of $1.4 \times 10^{14} cm^{-3}$. First, we confirmed by transport measurements that extreme quantum limit (EQL) and a metalinsulator (MI) transitions caused by magnetic-field-induced localization occur at $B_{EQL} \approx 150$ mT and $B_{MI} \approx 280$ mT. The microscopic measurements using STS are performed on cleaved InSb (110) in ultra high vacuum at 0.3 K. When the B-field is set to 0 mT, dI/dV maps at a sample bias voltage (V_s) of 0 mV show two-lobe-like maxima in the local density of state (LDOŠ), which are merged at a negative $V_s.$ The observed LDOS features are interpreted as quantized states confined by the potential valley, such as p-like and s-like states. They, however, abruptly vanish at B_{EQL} . This can be correlated to enhanced electron-electron interactions with respect to the potential disorder. Furthermore, we find that the confined states are recovered above B_{EQL} and diminish as the B-field approaches B_{MI} , suggesting that localization due to enhanced electron-donor interactions modifies the confined states.

Sectional Programme Overview

Room: BEY 154