HL 19 Hauptvortrag Zrenner

Zeit: Samstag 09:45-10:30

HauptvortragHL 19.1 Sa 09:45 TU P270Manipulations of a qubit in a semiconductor quantum dot —•ARTUR ZRENNER¹, STEFAN STUFLER¹, PATRICK ESTER¹ und MAXBICHLER² — ¹Universität Paderborn, Warburger Str. 100, D-33098 Paderborn — ²Walter Schottky Institut, Technische Universität München, Am Coulombwall, D-85748 Garching

Semiconductor quantum dots are zero-dimensional model systems with excellent optic and electric properties. In optical experiments on single self-assembled InGaAs quantum dots the excitonic ground state transition appears as an extremely narrow resonance of only a few μ eV width. The resonant interaction with cw laser fields can be studied in detail by photocurrent spectroscopy, revealing the effects of nonlinear absorption and power broadening of the line width, as expected for a genuine two-level system. For the case of pulsed laser fields and in the absence of decoherence, the two-level system represents a qubit. Excitations with ps laser pulses result in qubit rotations, which can be evidenced in a quantitative way as Rabi oscillations in photocurrent system parameters like the decoherence time and the excitonic fine structure of the underlying two level system.

Raum: TU P270